Things to remember in the last hour before the exam: Level 3 Demonstrate understanding of the properties of organic compounds (This is not a revision sheet — you've done that by now — it's a list of things you might want to remind yourself about... and it can't possibly cover everything — although it has a very good try!) - I. I meth-, 2 eth-, 3 prop-, 4 but-, 5 pent-, 6 hex-, 7 hept-, 8 oct-. - 2. Functional groups C=C (alkene), R-X (haloalkane where X is F, Cl, Br or I), R-NH₂ (amine), R-OH (alcohol), R-CHO (aldehyde), RC(=0)R (ketone), R-C(=0)OH (carboxylic acid), RC(=0)OR (ester), R-C(=0)Cl (acyl chloride), RC(=0)NH₂ (amide). Amines and amides can also be substituted R-NH-R' or RC(=0)NH-R' - 3. Isomers same # of atoms of each element, but have different arrangements of atoms. - Different connectivity constitutional (structural) isomers e.g. straight vs branched, position of functional group (propan-I-ol vs propan-2-ol) or functional group (ester vs carboxylic acid) - Same connectivity but different spatial arrangements stereoisomers - C=C bond restricts rotation & 2 diff atoms/groups on each C of the C=C: geometrical isomers (cis and trans) - Chiral/asymmetric C atom (C atom bonded to 4 different atoms/groups) leads to non-superimposable mirror images (enantiomers): optical isomers (LEARN TO DRAW A TETRAHEDON IN 3D!) Optical isomers rotate plane polarised light in opposite directions. Have same chemical & physical properties (apart from effect on light) e.g. m.pt, solubility & reactions, but different biochemical properties e.g. taste, smell). Equal mix of both isomers is racemic mix; no effect on light). ## 4. Types of reactions Substitution: reactions using conc. HCl or HBr (alkene \rightarrow haloalkane), SOCl₂ (alcohol to haloalkane AND c.acid to acyl chloride), NaOH(aq) / KOH(aq) (haloalkane \rightarrow alcohol), conc. NH₃ (haloalkane \rightarrow amine), primary amines (I° amine + haloalkane \rightarrow 2° amine), primary alcohols/H⁺ (ester formation), H₂O/H⁺ OR H₂O/OH⁻ (hydrolysis reactions) Substitution reactions include esterification, condensation, hydrolysis, and polymerisation. - Esterification: alcohol + c.acid \rightleftharpoons ester + H_2O OR alcohol + acyl chloride \rightarrow ester + HCl - Condensation: two (larger) molecules join together and small one is eliminated most often used when describing formation of polymers (see below) - Hydrolysis: substitution reaction; defined as "reaction with water" carried out in acidic conditions $(H^+/H_2O, heat OR NaOH(aq), heat)$. - Polymerisation: substitution reaction usually described as condensation, reactions involving formation of polyesters and polyamides - including proteins (from amino acids) - Addition: molecule combines with another, no other products; C=C to C-C. E.g. $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$. (see later for test to distinguish alkane and alkene) - \circ Elimination: reactions using KOH(alc), heat (haloalkane \rightarrow alkene) OR conc. H₂SO₄ (alcohol \rightarrow alkene): turns saturated molecule with C-C into unsaturated with a C=C. - Oxidation: reactions using the following reagents: MnO_4^{-}/H^+ , $Cr_2O_7^{2-}/H^+$ (1° alcohol \rightarrow aldehyde \rightarrow carboxylic acid; 2° alcohol \rightarrow ketone; MnO_4^{-} alkene \rightarrow diol) AND Tollens', Fehling's and Benedict's (aldehyde \rightarrow carboxylic acid) - \circ Reduction reaction using NaBH₄ (aldehyde ightarrow 1° alcohol, ketone (but not c.acid) ightarrow 2° alcohol) - Acid-base: Makes salt of the carboxylic acid. RCOOH + NaOH \rightarrow RCOO⁻ Na⁺ + H₂O. Also RCOOH + NH₃ \rightarrow RCOO⁻ NH₄⁺ (NOTE: to make an amide heat the SALT made R-C(=O)O⁻ NH₄⁺ \rightarrow R-C(=O)NH₂ + H₂O.) - 5. Tests for/to distinguish between - Alkane: orange Br₂ water very slowly decolourised, needs UV light and/or heat. Forms 2 layers as alkane is non-polar. - O Alkene: orange Br_2 water rapidly decolourised OR purple MnO_4^- to brown $MnO_2(s)$ OR purple MnO_4^-/H^+ to colourless $Mn^{2+}(aq)$; All form 2 layers as organic alkene is non-polar. - Alcohol: 1° and 2° oxidised by MnO₄-/H+ (purple to colourless Mn²⁺), Cr₂O₇²⁻/H+ (orange to green Cr³⁺); 3° not oxidised. Lucas Test (anhydrous ZnCl₂/conc.HCl) 3° cloudy immediately, 2° 10-15 minutes, 1° not (v v v v slow). Cloudiness due to insolubility of the haloalkane. - Amine: only basic chemical @ L3! Moist red litmus turns blue. Moist UI paper or solution turns blue WEAK base. RNH₂ + H₂O \Rightarrow RNH₃⁺ + OH⁻ (Do not confuse with amides which are neutral) - Carboxylic acid: Moist blue litmus turns red. Moist UI paper or solution turns orange WEAK ACID. RCOOH + $H_2O \Rightarrow RCOO^- + H_3O^+$. As acids will also react with Mg (fizzing, colourless gas) or NaHCO₃ or Na₂CO₃ (fizzing, colourless gas) - \circ Acyl chloride: VIGOROUS (and I mean vigorous) reaction with H_2O exothermic reaction with steamy acidic gas! R-COCl + $H_2O \rightarrow$ R-COOH + HCl; both products acidic! - $_{\odot}$ Amide: Boil with NaOH(aq.); R-CONH₂ + NaOH \rightarrow RCOO-Na+ NH₃; NH₃ gas turns moist red litmus blue - Aldehydes: (1) warm with Tollens (Ag⁺/NH₃); colourless to silver mirror forms: Ag⁺ + e⁻ \rightarrow Ag (reduction) as aldehyde is oxidised to c. acid. (2) warm with Benedict's / Fehling's (contains Cu²⁺); blue solution to orange-red precipitate of Cu₂O: Cu²⁺ + e⁻ \rightarrow Cu⁺ (reduction) as aldehyde is oxidised to c. acid. KETONES do not give these results (as ketone is not oxidised further). - Haloalkanes: warm with AgNO₃(alc) or NaOH(alc) followed by H⁺ and AgNO₃; ppt shows halide. Alc. is needed because the haloalkanes are insoluble/immiscible in water. (This test not usually examined) - Esters: Usually a colourless liquid with a pleasant 'odour', insoluble in water / immiscible. Learn how to name them yl oate "yl" bit from alcohol, "oate" bit from c.acid/acyl chloride) - 6. Markovnikov's rule: addition reaction of HX (HCl, HBr etc) OR H_2O (H^+/H_2O , heat) to an unsymmetrical alkene, the hydrogen atom of HX or H_2O becomes bonded to the carbon atom that had the greatest number of hydrogen atoms; "rich get richer' predicts MAJOR product. - 7. Saytzeff's / Zaitsev's rule): elimination of H₂O (from unsymmetrical alcohol) or HX (from unsymmetrical haloalkane), hydrogen atom lost from the carbon atom that had least hydrogen atoms / more substituted alkene is formed; "poor get poorer" predicts major product. Hint: if Q says "three products made" look for a cis and trans for 2 of the 3!) - Acid hydrolysis of ester / fat or oil break C(=O)-O; get carboxylic acid + alcohol Alkaline hydrolysis of ester / fat or oil break C(=O)-O; get sodium salt of carboxylic acid + alcohol - 9. Acid hydrolysis of polyamide / protein— break C(=0)-N; get R-COOH + R-NH3+ (-NH2 protonated) Alkaline hydrolysis of polyamide / protein— break C(=0)-N; get R-COO-Na+ + R-NH2. - 10. Insoluble: <u>all</u> alkanes, alkenes, alkynes, haloalkanes, polymers, and fats/oils (triglycerides). Soluble because the functional group <u>can hydrogen bond with water</u>: alcohols (C 1-3/4), carboxylic acids (C 1-4/5), acyl chloride, amines (C 1-5), amides, aldehydes and ketones (C 1-4), and small esters BUT... and it is a BIG BUT... as # of C↑ their solubility ↓ as non-polar R portion gets bigger. Please do not take the # of C atoms written here as EXACT..... hopefully NCEA will have the sense NOT to select borderline soluble/insoluble compounds. E.g. ethanamine (C2) = soluble whereas hexane = insoluble!